209 research outputs found

    Synchronizing a modular robot colony for cooperative tasks based on intrainter robot communications

    Get PDF
    The implementation of robotic cooperative tasks such as pushing an object toward a desired destination or manipulating an object using mobile robots or robotic arms requires motion coordination between the robot colony. When a robot is built by the union of several robots, such as modular robot systems, it is critical to have the complete coordination of each robot configuration within the colony and also overall robot coordination of the colony. The paper presents a demonstration of parallel motion for modular robot configurations through the combination of two types of communications, i.e., Inter-robot and Intra-robot communications. The two types of communications are described and implemented in a real modular robot system. Experiments are executed to show the performance of the robot colony synchronizatio

    Design of a Lightweight, Cost Effective Thimble-Like Sensor for Haptic Applications Based on Contact Force Sensors

    Get PDF
    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation

    MasterFinger: Multi-finger Haptic Interface for Collaborative Environments

    Get PDF
    This paper introduces the Master Finger development and application, a multi-finger haptic interface for virtual object manipulation. This haptic device, with a modular interface, is specially designed to perform collaborative tasks. Each module is in charge of managing the haptic interaction with a finger. The mechanical structure of the module is based on a serial-parallel structure linked to the finger thimble by a gimble with its own controller. Cooperative applications based onMasterFinger-2 (MF2) are also described in this study. Results from these applications show that multifinger interface is a significant leap in haptic devices since precise object grasping and collaborative manipulation by using two hands are successfully performed

    The Field of Telerobotics

    Get PDF
    The Field of Telerobotic

    Repetitive Movements in Melon Cultivation Workers under Greenhouses

    Get PDF
    Musculoskeletal disorders cause serious problems that affect workers in many sectors. The objective of this study is the ergonomic analysis of melon cultivation farmers in Almeria-type greenhouses. For this, the rapid upper limb assessment (RULA) method has been applied after carrying out a detailed process of observing the farmers’ tasks. The study shows that 65% of the postures have a very-high-risk level, 26% high, 9% average, and no posture is found with a low risk. They also show that in 69.57% of the postures, the upper limbs are less affected than the others such as the neck, trunk, and lower limbs. Measures are proposed to improve the working conditions for workers

    Simplified Hand Configuration for Object Manipulation

    Get PDF
    This work is focused on obtaining realistic human hand models that are suitable for manipulation tasks. Firstly, a 24 DOF kinematic model of the human hand is defined. This model is based on the human skeleton. Intra-finger and inter-finger constraints have been included in order to improve the movement realism. Secondly, two simplified hand descriptions (9 and 6 DOF) have been developed according to the constraints predefined. These simplified models involve some errors in reconstructing the hand posture. These errors are calculated with respect to the 24 DOF model and evaluated according to the hand gestures. Finally, some criteria are defined by which to select the hand description best suited to the features of the manipulation task

    The Effect of Haptic Feedback on Basic Social. Interaction within Shared Virtual Environments

    Get PDF
    This paper describes an experiment that studies the effect of basic haptic feedback in creating a sense of social interaction within a shared virtual environment (SVE). Although there have been a number of studies investigating the effect of haptic feedback on collaborative task performance, they do not address the effect it has in inducing social presence. The purpose of this experiment is to show that haptic feedback enhances the sense of social presence within a mediated environment. An experiment was carried out using a shared desktop based virtual environment where 20 remotely located couples who did not know one another had to solve a puzzle together. In 10 groups they had shared haptic communication through their hands, and in another group they did not. Hence the haptic feedback was not used for completing the task itself, but rather as a means of social interacting – communicating with the other participant. The results suggest that basic haptic feedback increases the sense of social presence within the shared VE

    Modelling of Modular Robot Configurations Using Graph Theory

    Get PDF
    Modular robots are systems that can change its geometry or configuration when connecting more modules or when rearranging them in a different manner to perform a variety of tasks. Graph theory can be used to describe modular robots configurations, hence the possibility to determine the flexibility of the robot to move from one point to another. When the robot’s configurations are represented in a mathematical way, forward kinematics can be obtained

    Experimental investigation of radio signal propagation in scientific facilities for telerobotic applications

    Get PDF
    Understanding the radio signal transmission characteristics in the environment where the telerobotic application is sought is a key part of achieving a reliable wireless communication link between a telerobot and a control station. In this paper, wireless communication requirements and a case study of a typical telerobotic application in an underground facility at CERN are presented. Then, the theoretical and experimental characteristics of radio propagation are investigated with respect to time, distance, location and surrounding objects. Based on analysis of the experimental findings, we show how a commercial wireless system, such as Wi-Fi, can be made suitable for a case study application at CERN
    • 

    corecore